

The Keadby 3 Low Carbon Gas Power Station Project

Document Ref: 6.3 Planning Inspectorate Ref: EN010114

The Keadby 3 (Carbon Capture Equipped Gas Fired Generating Station) Order

Land at and in the vicinity of the Keadby Power Station site, Trentside, Keadby, North Lincolnshire

Environmental Statement Volume II - Appendix 8A: Air Quality – Construction Phase

The Planning Act 2008

The Infrastructure Planning (Environmental Impact Assessment) Regulations 2017

> Applicant: Keadby Generation Limited Date: May 2021

DOCUMENT HISTORY

Document Ref	6.3.5/Appendix 8A	
Revision	VP1.0	
Document Owner	AECOM	

GLOSSARY

Abbreviation	Description
AADT	Annual Average Daily Traffic - Annual Average Daily Traffic
ADMS	Atmospheric Dispersion Modelling System
AQAL	Air Quality Assessment Levels
ССР	Carbon Capture Plant
CEMP	Construction Environmental Management Plan
CERC	Cambridge Environmental Research Consultants
HE	Highways England
HGV	Heavy Goods Vehicle
IAQM	Institute of Air Quality Management
LAQM	Defra Local Air Quality Management guidance and tools
LDV	Light Duty Vehicles
LWS	Local Wildlife Site
NRMM	Non-Road Mobile Machinery

CONTENTS

1.0	Introd	duction	1
	1.1	Overview	1
2.0	Scop	e	2
	2.1	Construction phase emissions	2
3.0		odology	
	3.1	Overview	4
	3.2	Construction dust assessment	4
	3.3	Construction traffic assessment	14
4.0	Conc	lusions	37
	4.1	Overview	37
5.0	Refer	rences	38

TABLES

Table 1: Example definitions of the magnitude of construction/ demolition activities	5
Table 2: Receptor sensitivity to construction/ demolition dust effects	6
Table 3: Sensitivity of the area to dust soiling effects on people/ property	8
Table 4: Sensitivity of the area to human health impacts	8
Table 5: Sensitivity of the area to ecological impacts	8
Table 6: Classification of risk of unmitigated impacts	9
Table 7: Identification of receptors for construction dust assessment	10
Table 8: Area sensitivity for receptors of construction dust	12
Table 9: Risk of impacts from unmitigated activities	13
Table 10: Screening criteria for determining the study area	17
Table 11: General ADMS roads model conditions	18
Table 12: Road traffic data used in the assessment	20
Table 13: Modelled human health receptors	21
Table 14: Modelled ecological receptors	22
Table 15: Defra modelled background concentrations	26
Table 16: Results of construction traffic impact assessment at human health	
receptors	29
Table 17: Results of construction traffic impact assessment at human health	
receptors following Long Term Trends Calculation	29
Table 18: Ecological sites within construction traffic study area containing features	
which are sensitive to air pollutants	31
Table 19: Results of construction traffic impact assessment at ecological receptors	33

1.0 INTRODUCTION

- 1.1 Overview
- 1.1.1 This Technical Appendix accompanies **Chapter 8**: Air Quality (ES Volume I **Application Document Ref. 6.2**) and describes the additional details for the construction dust assessment, and dispersion modelling of road traffic emissions from the Proposed Development during the construction phase.
- 1.1.2 Emissions to air from the Proposed Development have the potential to adversely affect human health and sensitive ecosystems, if not appropriately controlled. This Technical Appendix identifies and proposes measures to address the potential impacts and effects of the Proposed Development on air quality during enabling works, construction, and decommissioning. Emissions associated with the construction phase could give rise to potential localised air quality effects from traffic and dust generation, which have the potential to affect human health, amenity and sensitive ecosystems if not appropriately managed.
- 1.1.3 Emissions to air from the Proposed Development during operation, comprising emissions from the combustion plant and the carbon capture plant (CCP) are covered in Appendix 8B Operational Assessment (ES Volume II Application Document Ref. 6.3).
- 1.1.4 The magnitude of air quality impacts at sensitive human receptors has been quantified where appropriate for pollutants emitted from construction activities associated with the Proposed Development. The impact of emissions on sensitive ecological receptors has been considered in the context of relevant critical loads or critical levels for designated nature sites.

2.0 SCOPE

2.1 Construction phase emissions

- 2.1.1 The assessment has considered the impact of emissions during the construction and decommissioning of the Proposed Development on local air quality.
- 2.1.2 The assessment includes a review of the impacts of dust emissions from the various activities associated with the construction phase of the Proposed Development during planned construction works on site and the impacts associated with the emissions from construction traffic. Impacts on sensitive human and ecological receptors in the vicinity of the Proposed Development have been assessed.
- 2.1.3 The purpose of the construction dust assessment is to determine the potential risk of dust impacts occurring at sensitive receptors due to construction related activities. Furthermore, the assessment is undertaken in order to identify the scale of mitigation and control measures required to avoid such potential impacts, and to ensure that there will be no significant impacts at sensitive receptors beyond the Proposed Development Site boundary. These measures are then secured within the Construction and Environmental Management Plan (CEMP) a framework for which is presented as Application Document Ref. 7.1; full details on the construction activities and methods proposed are provided within Chapter 5: Construction Programme and Management (ES Volume I Application Document Ref. 6.2).

Cumulative impacts

- 2.1.4 Cumulative impacts from existing sources of pollution in the area are accounted for in the adoption of site-specific background pollutant concentrations from archived and published sources. It is recognised, however, that there is a potential impact on local air quality from other consented emission sources which were not present at the time of publication.
- 2.1.5 The full list of short-listed cumulative schemes considered for the Proposed Development is presented in Chapter 19: Cumulative and Combined Effects (ES Volume I – Application Document Ref. 6.2). This assessment considers these schemes, where relevant.
- 2.1.6 There is a risk that there could be cumulative impacts at dust sensitive receptors screened into the construction dust assessment for the Proposed Development due to the construction of other committed developments happening simultaneously in the area that are within the sensitivity definition of the same receptors. The assessment of construction dust impacts reported in this assessment has been undertaken in line with industry-standard guidance to demonstrate the level of dust control required to mitigate any potential for significant effects. It is reasonable to assume that any other construction site in

the vicinity of the Proposed Development will have done the same and will control dust through mitigation that is standard practice on all well managed construction sites across the UK. It is therefore concluded that the risk of cumulative construction dust impacts is low and not considered to be significant.

- 2.1.7 The traffic data used in this assessment includes predicted traffic growth on modelled roads between the current baseline and the future year baseline. The methodology to determine the growth in traffic on the local road network is described in Chapter 10: Traffic and Transportation (ES Volume I Application Document Ref. 6.2). The predicted growth included in the traffic data accounts for increases in traffic associated with other committed developments in the area and consequently the air quality assessment of road traffic emissions is inherently cumulative.
- 2.1.8 There is therefore no separate assessment of cumulative impacts of construction traffic related emissions to air as part of this ES.

Sources of information

- 2.1.9 The information that has been used within this assessment includes pertinent information from:
 - Chapter 4: Proposed Development (ES Volume I Application Document Ref. 6.2);
 - Chapter 5: Construction Programme and Management (ES Volume I Application Document Ref. 6.2);
 - details on the site layout;
 - Ordnance Survey mapping;
 - construction Traffic Data taken from Chapter 10: Traffic and Transportation (ES Volume I – Application Document Ref. 6.2); and
 - baseline air quality data from published sources and Local Authorities.

3.0 METHODOLOGY

3.1 Overview

- 3.1.1 This section describes the approach that has been taken to the assessment of emissions associated with the construction phase of the Proposed Development which has included:
 - qualitative assessment of construction dust effects; and
 - dispersion modelling of construction phase road traffic emissions on local roads.
- 3.1.2 Non-Road Mobile Machinery (NRMM) is considered within **Chapter 8:** Air Quality (ES Volume I **Application Document Ref. 6.2**).

3.2 Construction dust assessment

- 3.2.1 The following three potential activities have been screened as potentially significant, based on the nature of construction activities proposed:
 - earthworks (soil stripping, spoil movement and stockpiling);
 - construction (including on-site concrete batching); and
 - trackout (HGV movements on unpaved roads and offsite mud on the highway).
- 3.2.2 It is anticipated that only relatively minor site clearance works would be required as part of the Preliminary Works activities associated with the construction of the Proposed Development. Such site clearance works are not explicitly contained in the guidance (IAQM 2014), and for the purposes of this assessment, the closest assessment category available in the IAQM 2014 guidance is considered to be 'Demolition'. For this reason, term 'Demolition' is used throughout the remainder of the report to refer to site clearance and potential demolition, and that activity is screened in.
- 3.2.3 Further details of anticipated construction activities are available within Chapter
 5: Construction Programme and Management (ES Volume I Application Document Ref. 6.2).

Magnitude Definitions

3.2.4 The potential magnitude of dust emissions is categorised as detailed in Table 1.

Magnitude	Demolition	Earthworks	Construction	Trackout
Large	Total building volume >50,000m ³ , potentially dust construction material (e.g. concrete), on- site crushing and screening, demolition activities >20m above ground level	Site area >1ha potentially dusty soil type (e.g. clay). >10 heavy earth moving vehicles at once, bunds >8m high, total material moved >100,000 tonnes	Total building volume >100,000 m ³ , on-site concrete batching, sandblasting	<pre>>50 HDV (>3.5 tonne) peak outward movements per day, potentially dusty surface material (e.g. high clay content), unpaved road length >100m</pre>
Medium	Total building volume 20,000 – 50,000 m ³ , potentially dusty construction material, demolition activities 10 to 20 metres above ground level	Site area 0.25 – 1 ha, moderately dusty soil type (e.g. silt), 5 – 10 heavy earth moving vehicles at once, bunds 4- 8 metres high, total material moved 20,000 – 100,000 tonnes	Total building volume 25,000 – 100,000m ³ , potentially dusty materials e.g. concrete, on- site concrete batching	10 – 50 HDV (>3.5 tonne) peak outward movements per day, moderately dusty surface material (e.g. high clay content), unpaved road length 50 – 100 metres
Small	Total building volume <20,000m ³ , construction material with low potential for dust release (e.g. metal cladding	Site area <0.25 ha, large grain soil type (e.g. sand), <5 heavy earth moving vehicles at once, bunds	Total building volume <25,000m ³ , low dust potential construction materials. e.g. metal/timber	<10 HDV (>3.5 tonnes) peak outward movements per day, surface material low dust

Table 1: Example definitions of the magnitude of construction/demolition activities

Magnitude	Demolition	Earthworks	Construction	Trackout
	or timber), demolition activities <10 metres above ground level, demolition during wetter months	<4 metres high, total material moved <20,000 tonnes		potential, unpaved road length <50 metres

Receptor sensitivity definitions

3.2.5 The assessment of the significance of the effects of construction dust has been made with respect to the receptor and area sensitivity definitions as outlined in Table 2 to Table 5 below. Sensitivity definitions have been made with reference to the Institute of Air Quality Management (IAQM) guidance (IAQM, 2014); receptors beyond 100m are defined as low sensitivity to construction impacts; ecological receptors (including statutory designations, and nonstatutory ecological receptors of location importance such as local wildlife sites (LWS), national and local nature reserves) have been included as there are a number of ecological sites within the designated 50m¹ screening distance.

Potential dust effect	Human perception of dust soiling effects	PM ₁₀ Health effects	Ecological effects
High sensitivity	Enjoy a high level of amenity; appearance/ aesthetics/ value of property would be diminished by soiling; receptor expected to be present continuously/	Public present for 8 hours per day or more, e.g. residential, schools, care homes	Locations with an international or national designation and the designated features may be affected by dust soiling.
Moderate sensitivity	Enjoy a reasonable level of amenity; appearance/ aesthetics/ value of	Only workforce present (no residential or high sensitivity	Locations where there is a particularly important plant

¹ Ecological receptors assessed are those located within 50m of the nearest construction activity and/ or within 50m of a public road used by construction traffic that is within 500m of the construction site entrance (A18).

Potential dust effect	Human perception of dust soiling effects	PM ₁₀ Health effects	Ecological effects
	property could be diminished by soiling; receptor not expected to be present continuously/	receptors) 8- hours per day or more	species, where dust sensitivity is uncertain or unknown or locations with a national designation where the features may be affected by dust deposition
Low sensitivity	Enjoyment of amenity not reasonably expected; appearance/ aesthetics/ value of property not diminished by soiling; receptors are transient / present for limited period of time; e.g. playing fields, farmland, footpaths, short term car parks*	Transient human exposure, e.g. footpaths, playing fields and parks.	Locations with a local designation which may be affected by dust deposition.

3.2.6 Distances have been measured from source to receptor in bands of less than 20m, less than 50m, less than 100m and less than 350m for earthworks and construction in accordance with the IAQM guidance. For trackout, the receptor distances have been measured from receptor to trackout route (up to 50m) and up to 500m from the construction site exit. These distance bands have been applied in Table 3 and Table 4. For sensitivity of an area to ecological impacts, the distance bands are for less than 20m and less than 50m.

Table 3: Sensitivity of the area to dust soiling effects on people/ property

Receptor Number of Distance from			rom the sou	urce (m)	
sensitivity	receptors	<20	<50	<100	<350
High	>100	High	High	Medium	Low
	10-100	High	Medium	Low	Low
	1-10	Medium	Low	Low	Low
Moderate	>1	Medium	Low	Low	Low
Low	>1	Low	Low	Low	Low

Table 4: Sensitivity of the area to human health impacts

Receptor Number of		Distance from the source (m)			
sensitivity	sensitivity receptors		<50	<100	<350
High (annual	>100	Medium	Low	Low	Low
mean PM ₁₀	10-100	Low	Low	Low	Low
concentration <24µg/m ³)	1-10	Low	Low	Low	Low
Medium (annual	>10	Low	Low	Low	Low
mean PM ₁₀ concentration <24µg/m ³)	1-10	Low	Low	Low	Low
Low	≥1	Low	Low	Low	Low

Table 5: Sensitivity of the area to ecological impacts

Receptor sensitivity	Distance from source (m)		
	<20		
High	High	Medium	
Medium	Medium	Low	
Low	Low	Low	

Risk definitions

3.2.7 The potential risks from emissions from unmitigated demolition and construction activities have been defined with reference to the magnitude of the potential emission and the sensitivity of the highest receptor(s) within the effect area, as summarised in Table 6 below.

Area of	Magnitude		
Sensitivity to Activity	Large	Medium	Small
Demolition			·
High	High risk	Medium risk	Medium risk
Medium	High risk	Medium risk	Low risk
Low	Medium risk	Low risk	Negligible
Earthworks			·
High	High risk	Medium risk	Low risk
Medium	Medium risk	Medium risk	Low risk
Low	Low risk	Low risk	Negligible
Construction			
High	High risk	Medium risk	Low risk
Medium	Medium risk	Medium risk	Low risk
Low	Low risk	Low risk	Negligible
Trackout		·	·
High	High risk	Medium risk	Low risk
Medium	Medium risk	Low risk	Negligible
Low	Low risk	Low risk	Negligible

Table 6: Classification of risk of unmitigated impacts

Magnitude assessment

3.2.8 For the purpose of this assessment, the Proposed Development Site is considered to be a large emissions source for fugitive dust emissions from construction related activities, as defined in Table 1.

Receptor identification

3.2.9 Human health and ecological receptors have been identified within the study area and are shown in Table 7 (CDR = Construction Dust Receptor).

Table 7: Identification of receptors for construction dust assessment

ID	Receptor name	Receptor type	Approx. distance (m) from Proposed Development Site boundary or exit*	Approx. distance to construction route (m)	Within screening distance?	Receptor sensitivity to dust and particulate matter
CDR1	Vazon Bridge House	Residential	55	2,570	Yes	High
CDR2	Hawthorn House	Residential	0	2,860	Yes	High
CDR3	76 Chapel Lane	Residential	50	3,015	Yes	High
CDR4	Keadby Warping Drain LWS	Ecological	0	3,380	Yes	Low
CDR5	Keadby Boundary Drain LWS	Ecological	0	2,465	Yes	Low
CDR6	Stainforth and Keadby Canal Corridor LWS	Ecological	0	2,415	Yes	Low
CDR7	Keadby Wetland LWS	Ecological	25	2,380	Yes	Low
CDR8	South Soak Drain, Keadby LWS	Ecological	25	2,335	Yes	Low
CDR9	Keadby Wet Grassland LWS	Ecological	50	2,370	Yes	Low
CDR10	Trentside, Keadby	Commercial	10	3,065	Yes	Low
CDR11	Pilfrey Farm	Residential	250	30	Yes	High

ID	Receptor name	Receptor type	Approx. distance (m) from Proposed Development Site boundary or exit*	Approx. distance to construction route (m)	Within screening distance?	Receptor sensitivity to dust and particulate matter
CDR12	Hatfield Waste Drain LWS	Ecological	0	15	Yes	Low
CDR13	North Engine Drain, Belton LWS	Ecological	1	0	Yes	Low
CDR14	River Torne LWS	Ecological	25	20	Yes	Low
CDR15	North Pilfrey Farm	Residential	145	1,450	Yes	High
CDR16	Ealand Warpings	Residential	190	1,150	Yes	High
CDR17	Humber Estuary Ramsar Site, SAC and SSSI	Ecological	0	0	Yes	Medium
CDR18	Roe Farm	Residential	55	2,510	Yes	High
CDR19	Sea Scout Boat House	Recreational	80	2,400	Yes	Medium

* rounded to nearest 5m

Area sensitivity assessment

3.2.10 The receptor sensitivity to the effects of dust soiling and PM₁₀ (human health) impacts has been determined for all activities, based on the closest distance from the identified receptors to those activities, as summarised in Table 8 below. The overall area sensitivity to dust soiling and PM₁₀ (dust soiling and human health) is considered to be 'low to medium'², whilst the area sensitivity to ecological dust impacts is considered to be 'medium'.

Activity	Potential impact	Receptor sensitivity and distance to activity	Area sensitivity ³
Demolition (Site	Dust soiling	High sensitivity (<10 receptors) <20m	Medium
clearance and	Health PM ₁₀	High Sensitivity (<10 receptors) <20m	Low
preparatory works)	Ecological Impact	Medium sensitivity <20m	Medium
Earthworks	Dust soiling	High sensitivity (<10 receptor) <20m	Medium
	Health PM ₁₀	High Sensitivity (<10 receptors) <20m	Low
	Ecological Impact	Medium sensitivity <20m	Medium
Construction	Dust soiling	High sensitivity (<10 receptors) <20m	Medium
	Health PM ₁₀	High Sensitivity (<10 receptors) <20m	Low
	Ecological Impact	Medium sensitivity <20m	Medium
Trackout	Dust soiling	High sensitivity (<10 receptors) <20m	Low

Table 8: Area sensitivity for receptors of construction dust

2 Using Table 2 of IAQM 2014 guidance on the assessment of dust from demolition and construction

3 Defined in accordance with Step 2B of IAQM 2014 taking into account the specific sensitivities of receptors in the area; the proximity and number of those receptors; in the case of PM_{10} , the local background concentration; and site-specific factors, such as whether there are natural shelters, such as trees, to reduce the risk of wind-blown dust

Activity	Potential impact	Receptor sensitivity and distance to activity	Area sensitivity ³
	Health PM ₁₀	High Sensitivity (<10 receptors) <20m	Low
	Ecological Impact	Medium sensitivity <20m	Low

3.2.11 The risk of impacts from unmitigated activities has been determined through combination of the potential dust emission magnitude and the sensitivity of the area, for each activity to determine the level of mitigation that should be applied. The risk of impacts from unmitigated activities are summarised in Table 9 below.

Activity	Demolition/Site preparation	Earthworks	Construction	Trackout
Dust Emission Magnitude	Medium	Large	Large	Medium
Risk of impac	ts from unmitigat	ed activities		
Dust soiling (medium sensitivity)	Medium Risk	High Risk	High Risk	Medium Risk
Health PM ₁₀ (low sensitivity)	Low Risk	Low Risk	Low Risk	Low Risk
Ecological impact	Medium Risk	Medium Risk	Medium Risk	Low Risk

Table 9: Risk of impacts from unmitigated activities

- 3.2.12 The risk assessment for construction dust indicates that there would be a low risk of unmitigated dust impacts on human health (PM₁₀) and a medium to high risk for dust soiling from unmitigated clearance works ("demolition (site clearance and preparatory works)"), earthworks, construction and track out activities. The assessment also shows that the impact of unmitigated construction activities on ecological sites is likely to be a medium risk.
- 3.2.13 These risk classifications are solely used to select the appropriate schedule of mitigation measures, examples of which are set out in guidance published by the IAQM (IAQM, 2014). For all but the smallest of sites the use of the high-risk schedule of measures represents good working practice.
- 3.2.14 On consideration of the likely effectiveness of these measures, additional sitespecific measures will be identified in the CEMP if required but at this stage the requirement for any such measures has not been identified. If required, measures may include:

- cutting and grinding operations, if required, will be conducted using equipment and techniques that reduce emissions and incorporate appropriate dust suppression measures;
- damping down of dust-generating equipment and vehicles within the Site and the provision of dust suppression in all areas of the Site that are likely to generate dust;
- use water suppression and regular cleaning during earth moving activities;
- materials stockpiles likely to generate dust enclosed or securely sheeted, damped down or stabilised as appropriate;
- covering materials, deliveries or loads entering and leaving the construction site;
- mixing of grout or cement-based materials will be undertaken using appropriate techniques/mitigation;
- haul routes will be surfaced and maintained;
- enforcement of speed limits on haul roads;
- measures will be taken to keep roads and accesses clean; and
- vehicle, plant and equipment maintenance records will be kept on-site and reviewed regularly.
- 3.2.15 It is considered that with the implementation of appropriate mitigation and control measures set out in the Framework CEMP (Application Document Ref. 7.1), the potential effect from fugitive emissions of construction dust would not be significant.

3.3 Construction traffic assessment

Introduction

- 3.3.1 For the construction traffic assessment, all potentially affected roads have been assessed at a 'detailed level' of assessment. As detailed in IAQM Guidance (IAQM, 2017), a 'detailed level' assessment uses dispersion modelling to predict pollutant concentrations, taking into account additional variables. The detailed assessment of local air quality reported herein has used the Cambridge Environmental Research Consultants (CERC) Atmospheric Dispersion Modelling System (ADMS) Roads dispersion model (version 5.0.0) to predict road pollutant contributions at identified sensitive receptors.
- 3.3.2 Predictions in traffic flows have been made for the baseline year (2020 Base) and the peak construction year (2031, due to uncertainty in the timing of the construction schedule, as this represents a 'worst-case' traffic scenario (see Chapter 10: Traffic and Transportation (ES Volume I Application Document Ref. 6.2)). Air quality is expected to improve as traffic emissions and emissions from other sources progressively decrease across the UK, and an earlier year

would therefore provide a more conservative assessment of potential air quality effects. Dispersion modelling has used the 2031 traffic data (which includes additional growth) with 2025 emissions and backgrounds to assess scenarios the Proposed Development construction work (2025 Construction Peak) and without the Proposed Development construction work (2025 Base). On the basis of these predictions, the change in key pollutant concentrations (NO₂, PM_{10} and $PM_{2.5}$) associated with the Proposed Development have been established.

- 3.3.3 Predictions have been verified using a conservative verification factor based on professional experience of similar projects (as set out in paragraphs 3.3.26 to 3.3.29 of this Appendix) and applied to bring modelled concentrations more in line with monitored concentrations.
- 3.3.4 A key element of the local construction phase detailed assessment is the rate of improvement in air quality over time as cleaner road vehicles enter the national vehicle fleet. Due to the current uncertainty in projected year-on-year improvements in UK vehicle fleet emissions and background pollutant concentrations, this assessment has made use of the approach set out in the Highways England (HE) Design Manual for Roads and Bridges (DMRB) guidance (Highways England, 2019) - DMRB LA 105 Air Quality (formerly Interim Advice Note IAN 170/12. Referred to as Gap Analysis, the method considers the Department of Environment, Food and Rural Affairs (Defra) advice on long-term trends related to roadside NO₂ concentrations. This advice suggests that there is a gap between current projected vehicle emission reductions and projections on the annual rate of improvements in ambient air quality as previously published in Defra's technical guidance and observed trends. This is due to discrepancies between measured NO₂ trends and pre-Euro 6/VI EFT projections, which were based on roadside measurements taken before Euro 6/VI vehicles entered the UK fleet, i.e. pre-2015 data. Consequently, Highways England developed a set of NO₂ projection factors to inform scheme air quality assessments and these projections are referred to as long-term trend (LTT).
- 3.3.5 The impact of the Proposed Development is based on modelled predictions of pollutant concentrations in the scenarios considered, taking account of the Gap Analysis approach, described above, and Defra Local Air Quality Management (LAQM) guidance and tools, including the current version of the NO_x to NO₂ conversion approach and background maps. Predictions are also informed by two-way 24 hour annual average daily traffic (AADT) flow data, sourced from **Chapter 10**: Traffic and Transportation (ES Volume I **Application Document Ref. 6.2**), and hourly sequential meteorological data from a representative meteorological station.
- 3.3.6 Further details of the assessment methodology including the inputs used in the ADMS-Roads model (including meteorology data), model post-processing (e.g. NO_x to NO₂ conversion) and the approach taken to model verification (including

all monitoring locations used in the verification process) are presented in the following sub-sections.

- 3.3.7 Representative sensitive receptors (e.g. residential properties and ecological sites) have been selected for assessment within the local air quality assessment. These include those sensitive receptors located closest to the Site and within the study area for construction effects.
- 3.3.8 The predicted air quality impacts of the Proposed Development are evaluated against relevant national, regional and local air quality planning policy. An evaluation of the significance of the local air quality assessment findings at sensitive receptors for human health has been undertaken in accordance with IAQM/ EPUK guidance (IAQM, 2017). It is considered that the determination of significance using the IAQM/EPUK guidance is more conservative for the assessment of the Proposed Development than the use of significance criteria provided in Highways England guidance, where a significant effect can only occur when there is an exceedance of an air quality standard in either future baseline or future construction phase scenarios.
- 3.3.9 The significance of the effects on European and nationally designated habitat sites, including the magnitude of change in NO_x and nitrogen deposition, are considered as part of the Ecology and Nature Conservation assessment (see Chapter 11: Biodiversity and Nature Conservation (ES Volume I Application Document Ref. 6.2).

Screening Criteria

- 3.3.10 The construction phase traffic assessment considers the impact of emissions associated with additional heavy duty vehicles (HDV vehicles >3.5t in weight) and light duty vehicles (LDV vehicles <3.5t in weight) introduced to the local road network due to construction work associated with the Proposed Development, including those associated with the import and export of materials to and from site, and the commuting of contractors.
- 3.3.11 The screening of traffic data has been undertaken using both the approach set out in the DMRB guidance and the approach set out by IAQM guidance. The IAQM approach identifies a larger air quality study area and more stringent criteria for the identification of affected road links, and therefore this been applied to the assessment. The IAQM criteria is summarised in Table 10.

Table 10: Screening criteria for determining the study area

If the Development will:	Indicative Criteria to Proceed to an Air Quality Assessment
Cause a significant change in Light Duty Vehicle (LDV) traffic flows on local roads with relevant receptors. (LDV = cars and small vans <3.5t gross vehicle weight).	A change of LDV flows of: - more than 100 AADT within or adjacent to an AQMA - more than 500 AADT elsewhere.
Cause a significant change in Heavy Duty Vehicle (HDV) flows on local roads with relevant receptors. (HDV = goods vehicles + buses >3.5t gross vehicle weight).	A change of HDV flows of: - more than 25 AADT within or adjacent to an AQMA - more than 100 AADT elsewhere.

3.3.12 The construction traffic assessment considers those areas where a change in traffic above the criteria identified in Table 10 occurs in the immediate area around the Proposed Development. There is a single Air Quality Management Area (AQMA) declared within the overall study area, however it is not anticipated that it will be affected by the change in traffic flows due to the construction of the Proposed Development. Consequently, only roads with changes of more than 500 AADT in LDV or 100 AADT in HDVs are considered to be within the construction study area. The study area is shown in **Figure 8.3** (ES Volume III - **Application Document Ref. 6.4**).

Modelled scenarios

- 3.3.13 A quantitative assessment of the impact of exhaust emissions from additional road traffic has been undertaken for the following scenarios:
 - 2020 Baseline Scenario (for model verification process), using 2020 traffic data, 2020 emissions factors, 2020 background concentrations and 2019 meteorological data;
 - 2025 Future Baseline Scenario (for Long Term Trends Calculations), using 2031 traffic data, 2025 emissions factors, 2025 background concentrations and 2019 meteorological data;
 - 2025 Future Construction Year Base + Committed Development Scenario, using 2031 traffic data, 2025 emissions factors, 2025 background concentrations and 2019 meteorological data; and
 - 2025 Future Construction Year Base + Committed + Peak Construction Scenario, using 2031 traffic data, 2025 emissions factors, 2025 background concentrations and 2019 meteorological data.

Model inputs

3.3.14 The general model conditions used in the assessment of road traffic emissions are summarised in Table 11. Other more detailed data used to model the dispersion of emissions is considered below.

Variable	Input
Surface Roughness at source	0.5m
Minimum Monin-Obukhov length for stable conditions	10m
Receptors	Selected discrete receptors
Receptor location	X,Y co-ordinates determined by GIS. The height of residential receptors will be set at 1.5m. Ecological receptors are set at 0m
Emissions	NO _x , PM ₁₀ , PM _{2.5}
Emission Factors	Emission Factor Toolkit version 10.1
Meteorological Data	1 year of hourly sequential data, Doncaster Robin Hood Airport Meteorological Station (2019)
Emission Profiles	None used – emissions averaged across a 24 hour period
Terrain Types	Flat terrain
Model Output	Long-term annual mean NO_x concentration (µg/m ³) Long-term annual mean PM_{10} concentration (µg/m ³) Long-term annual mean $PM_{2.5}$ concentration (µg/m ³)

Table 11: General ADMS roads model conditions

Traffic data

- 3.3.15 The traffic data used in this assessment has been prepared by AECOM and takes the form of Annual Average Daily Traffic (AADT).
- 3.3.16 The future construction base year used in **Chapter 10**: Traffic and Transportation (ES Volume I **Application Document Ref. 6.2**) is 2031 to account for the maximum potential traffic growth due to potentially delaying the start of construction until 2029. This assessment has assumed that this growth has occurred by 2025 to align with the earliest year of opening. The construction base year is the period where the number of construction vehicles accessing the Proposed Development Site will peak and is assumed to be a worst-case

for assessing potential effects due to construction traffic. All future scenarios consider traffic generated from other committed developments within the study area. AADT traffic flows are presented in Table 12.

3.3.17 As detailed in **Chapter 10**: Traffic and Transportation (ES Volume I - **Application Document Ref. 6.2**), there is currently a temporary 40 miles per hour (mph) speed limit restriction on the A18 around the construction site access for the construction of Keadby 2. It is anticipated that this restriction will remain in place during the construction of the Proposed Development. The modelled traffic data as provided has used an average speed of 55 mph, and a comparison between emissions rates due to the differences in vehicle speeds was undertaken. At 55 mph, emissions rates from the Emission Factors Toolkit are slightly higher than if modelled at 40 mph. The higher vehicle speed has therefore been used to provide a conservative assessment of the impacts of road traffic emissions.

Table 12: Road traffic data used in the assessment

Road/Link ID	2020 Base	9		2031 Base			2031 Construction Peak		
	Total AADT	HDV	Avg. Speed (km/hr)	Total AADT	HDV	Avg. Speed (km/hr)	Total AADT	HDV	Avg. Speed (km/hr)
A18 (West of Construction Site Access)	8,132	707	88	9,179	798	88	10,081	918	88
A161 (between A18 and M180 Jct 2)	5,622	704	77	6,346	795	77	7,080	915	77
A18 Station Rd (West of Keadby Bridge)	14,896	962	53	16,813	1,086	53	17,147	1,086	53
B1392 (North of Main Site Entrance)	1,650	142	51	1,862	160	51	1,862	160	51
B1392 (South of Main Site Entrance)	2,661	271	34	3,003	306	34	3,003	306	34
A18 (East of Construction Site Access)	8,132	707	88	9,179	798	88	9,513	798	88

Emissions data

3.3.18 The magnitude of road traffic emissions for the baseline and with development scenarios have been calculated from traffic flow data using the Defra's current emission factor database tool EFT 10.1 (Defra, 2020). The uncertainty in future emission rates is considered by use of Highways England's DMRB Gap Analysis. The assessment considers the construction phase impact of road traffic emissions at receptors adjacent to roads in the vicinity of the Proposed Development.

Modelled domain – discrete receptors

- 3.3.19 In line with guidance and standard practice, representative worst-case receptors located within 200m of road links associated with the Proposed Development (i.e. the study area for the traffic assessment) are considered in this assessment. For human health receptors, receptor locations represent the nearest façade of a residential property, school or medical facility to the road links considered. For ecology receptors, they represent the nearest part of each designated site to the road links, with additional receptor points set in a transect with increasing distance from the road links, to demonstrate the spatial variation in predicted impacts across each designated site.
- 3.3.20 This report has considered receptors that appear within 200m of the road network of this study area that have AADT flows reported for them in Chapter 10: Traffic and Transportation (ES Volume I Application Document Ref. 6.2), and within 200m of the site access road. Consequently, discrete receptors have been identified irrespective of the change in AADT flow between base year and future year scenarios for a road.
- 3.3.21 The receptors for which the impact of road traffic emissions will be predicted are listed in Table 13 and Table 14 (TR = Traffic Receptor, TE = Traffic Ecology).

Receptor ID	x	У	Description
TR1	480758	409985	Pilfrey Farm, A18
TR2	482615	409594	Residential Property on Crowle Bank Road
TR3	483281	409791	Residential Property on Kelsey Lane
TR4	483863	410649	Residential Property on Old School Lane, Keadby
TR5	483724	410668	Residential Property on Station Road, Keadby
TR6	483691	410790	Residential Property on Station Road, Keadby

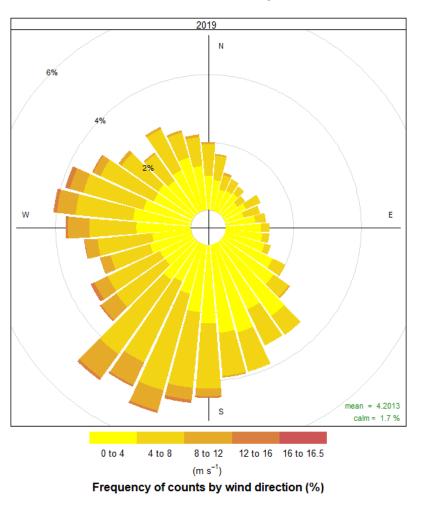
Table 13: Modelled human health receptors

Receptor ID	x	У	Description
TR7	483548	411238	Residential Property on Station Road, Keadby
TR8	483511	411611	Blackfriars Cottage (former Trentvale Prep School, Keadby)
TR9	483527	411804	Residential Property on Trent Side, Keadby
TR10	478181	409792	Little Hurst Cottages, A161
TR11	478347	409479	Hirstwood Farm, A161
TR12	478457	409228	Residential property at Mosswood Court, A161

Table 14: Modelled ecological receptors

Receptor ID	x	У	Designated site
TE1	479055	410252	Hatfield Waste Drain LWS - North of A18
TE2	478651	410338	Hatfield Waste Drain LWS - South of A18
TE3	479110	410221	North Engine Drain, Belton LWS
TE4	479108	410198	River Torne LWS
TE5	480922	409925	Three Rivers LWS - South
TE6	480957	409898	South Engine Drain, Belton LWS
TE7	483532	411259	Three Rivers LWS - North
TE8	483434	411422	Stainforth and Keadby Canal Corridor LWS
TE9	483338	411379	Keadby Wetland LWS
TE10a	483561	411266	Humber Estuary SSSI SAC and Ramsar
TE10b	483582	411274	Humber Estuary SSSI SAC and Ramsar
TE10c	483603	411282	Humber Estuary SSSI SAC and Ramsar
TE10d	483624	411290	Humber Estuary SSSI SAC and Ramsar
TE10e	483644	411298	Humber Estuary SSSI SAC and Ramsar

Receptor ID	x	У	Designated site
TE10f	483665	411306	Humber Estuary SSSI SAC and Ramsar
TE10g	483686	411314	Humber Estuary SSSI SAC and Ramsar
TE10h	483706	411322	Humber Estuary SSSI SAC and Ramsar
TE10i	483727	411330	Humber Estuary SSSI SAC and Ramsar
TE10j	483748	411338	Humber Estuary SSSI SAC and Ramsar
TE11a	484102	410665	Humber Estuary SSSI SAC and Ramsar
TE11b	484098	410688	Humber Estuary SSSI SAC and Ramsar
TE11c	484094	410710	Humber Estuary SSSI SAC and Ramsar
TE11d	484090	410732	Humber Estuary SSSI SAC and Ramsar
TE11e	484086	410754	Humber Estuary SSSI SAC and Ramsar
TE11f	484082	410776	Humber Estuary SSSI SAC and Ramsar
TE11g	484078	410799	Humber Estuary SSSI SAC and Ramsar
TE11h	484073	410821	Humber Estuary SSSI SAC and Ramsar
TE11i	484069	410843	Humber Estuary SSSI SAC and Ramsar
TE11j	484065	410865	Humber Estuary SSSI SAC and Ramsar
TE12	478707	410333	Hatfield Chase Ditches SSSI
TE13a	479020	410284	Crowle Borrow Pits SSSI
TE13b	479024	410305	Crowle Borrow Pits SSSI
TE13c	479028	410325	Crowle Borrow Pits SSSI
TE13d	479032	410346	Crowle Borrow Pits SSSI
TE13e	479036	410366	Crowle Borrow Pits SSSI
TE13f	479040	410386	Crowle Borrow Pits SSSI


Receptor ID	x	У	Designated site
TE13g	479044	410407	Crowle Borrow Pits SSSI
TE13h	479048	410427	Crowle Borrow Pits SSSI
TE13i	479052	410447	Crowle Borrow Pits SSSI
TE13j	479056	410468	Crowle Borrow Pits SSSI

Meteorological data

3.3.22 The model runs carried out for the Proposed Development used hourly sequential data from Doncaster Robin Hood Airport for the year 2019, consistent with the year chosen to verify the performance of the model against measured NO₂ concentrations. This meteorological site is located approximately 19km south-west of the study area. A wind rose for this site is presented in **Plate 1**.

Plate 1: Doncaster Robin Hood Airport - 2019 Windrose

Produced using R Openair (Carslaw et al, 2012)

Background concentrations

3.3.23 Annual average background concentrations were taken from Defra's 2018 baseline 1x1 km background maps and adjusted using Defra's adjustment tool removing emissions from road traffic for motorways and primary or trunk A roads. The data used in the assessment is presented for the centre of each 1x1 km grid square in Table 15. The Defra background concentrations have also been compared against local authority background monitoring, which has suggested no uplift is required.

Grid Ref. of Centre	2018 Background concentrations (µg/m ³)				2025 Background concentrations (µg/m ³))
Point	NOx	NO ₂	PM ₁₀	PM _{2.5}	NOx	NO ₂	PM ₁₀	PM _{2.5}
480500, 409500	11.6	8.9	16.4	9.0	8.8	6.9	15.3	8.1
482500, 409500	11.6	8.9	16.4	9.0	8.8	6.9	15.2	8.1
483500, 409500	12.2	9.3	16.1	9.0	9.2	7.2	14.9	8.1
483500, 410500	12.7	9.7	15.7	9.0	9.8	7.6	14.4	7.9
483500, 411500	12.2	9.3	15.0	8.7	9.4	7.3	13.8	7.7
478500, 409500	11.9	9.1	16.6	9.1	8.8	6.9	15.4	8.2
479500, 410500	12.0	9.2	16.2	8.9	9.2	7.2	15.1	8.0
478500, 410500	11.7	9.0	16.2	9.0	9.0	7.0	15.1	8.1
484500, 410500	13.0	9.9	16.3	9.0	10.0	7.8	15.2	8.0

Table 15: Defra modelled background concentrations

Consideration of terrain

3.3.24 Emissions from road traffic make the greatest contribution to pollutant concentrations at sensitive receptors adjacent to the source. For this reason, there is not normally a large variation in height between the emission source and residential properties next to the roads included in the model. Therefore, terrain is not included in the road traffic modelling assessment.

NO_x to NO₂ conversion

3.3.25 To accompany the publication of the guidance document LAQM.TG(16) (Defra, 2016), a NO_x to NO₂ converter was made available as a tool to calculate the road NO₂ contribution from modelled road NO_x contributions. The tool comes in the form of an MS Excel spreadsheet and uses borough specific data to calculate annual mean concentrations of NO₂ from dispersion model output values of annual mean concentrations of NO_x. Version 8.1 (June 2020) of this tool has been used to calculate the total NO₂ concentrations at receptors from the modelled road NO_x contribution and associated background concentration. Due to the location of the Proposed Development, North Lincolnshire Council

(NLC) has been specified as the local authority and the 'All other non-urban UK traffic' mix selected.

Bias adjustment of road contribution NO_x, PM₁₀ and PM_{2.5}

- 3.3.26 The modelled road NO_x contributions from the ADMS-Roads model have been adjusted for bias through model verification, in line with the method described in LAQM.TG(16). The purpose of this exercise is to bring the baseline model performance in line with known pollutant concentrations at set locations within the model domain. The level of adjustment identified in the baseline scenario is then applied to future baseline and future operational scenarios.
- 3.3.27 A review of existing and publicly available local authority data has been undertaken. NLC do not undertake any air quality monitoring in the vicinity of the Proposed Development, or along any roads included as part of the Appendix 10A: Transport Assessment (ES Volume II - Application Document Ref. 6.3).
- 3.3.28 In the absence of data suitable for model verification, a verification factor of 3.0 has been used to inform the current assessment, based on professional experience of dispersion model verification exercises in similar environments. This is considered to be a conservative estimate of the model verification factor and has therefore been applied to the predicted road NO_x concentrations prior to the conversion of road NO_x to total NO₂ concentrations at the receptors.
- 3.3.29 There is insufficient roadside measurement data for the primary pollutants PM_{10} or $PM_{2.5}$ within the study area to derive a specific adjustment factor. The same bias adjustment factor derived for the modelled contributions of the primary pollutant NO_x has been applied to the modelled road PM_{10} and $PM_{2.5}$ contributions, as recommended in LAQM.TG(16).

Predicting the number of days in which the NO₂ hourly mean objective is exceeded

- 3.3.30 Research projects completed on behalf of Defra and the Devolved Administrations, have concluded that the hourly mean NO₂ objective is unlikely to be exceeded if annual mean concentrations are predicted to be less the 60 μ g/m³ (Laxen and Marner, 2003, AEAT, 2008).
- 3.3.31 In 2003, Laxen and Marner concluded:

'...local authorities could reliably base decisions on likely exceedances of the 1hour objective for nitrogen dioxide alongside busy streets using an annual mean of 60 μ g/m3 and above.'

3.3.32 The findings presented by Laxen and Marner are further supported by AEAT (2008) who revisited the investigation to complete an updated analysis including new monitoring results and additional monitoring sites. The recommendations of this report are:

^{$L}</sup>Local authorities should continue to use the threshold of 60 <math>\mu$ g/m³ NO₂ as the trigger for considering a likely exceedance of the hourly mean nitrogen dioxide objective.^L</sup>

3.3.33 Therefore, this assessment evaluates the likelihood of exceeding the hourly mean NO₂ objective by comparing predicted annual mean NO₂ concentrations at all receptors to an annual mean equivalent threshold of 60 μg/m³. Where predicted concentrations are below this value, it can be concluded that the hourly mean NO₂ objective (200 μg/m³ NO₂ not to be exceeded more than 18 times per year) will be achieved.

Predicting the number of days in which the PM₁₀ 24-hour mean objective is exceeded

3.3.34 The guidance document LAQM.TG(03) sets out the method by which the number of days in which the PM₁₀ 24hr objective is predicted to be exceeded can be obtained based on a relationship with the predicted PM₁₀ annual mean concentration. The most recent guidance LAQM.TG(16) suggests no change to this method. As such, the formula used within this assessment is:

No. PM_{10} 24-hour mean exceedances = -18.5 + 0.00145 × C³ + (206/C) Where C is the annual mean concentration of PM_{10} .

Specialized model treatments

3.3.35 No specialised model treatments have been used in the assessment of construction road traffic emissions.

Calculation of nitrogen and acid deposition for ecological receptors

3.3.36 Conversion factors for calculating nitrogen and acid deposition from modelled NO₂ are found in the Air Quality guidance (Highways England, 2019).

Results of the Construction traffic assessment

- 3.3.37 Table 16 shows the predicted annual mean concentrations of NO₂, PM₁₀ and PM_{2.5}; and number of exceedances of the 24-hour 50 μg/m³ PM₁₀ objective for the Do Something scenario at the modelled receptor locations. The value in brackets indicates the difference between the Do Minimum and Do Something scenario.
- 3.3.38 With reference to the significance criteria, impacts at all human receptors can be considered negligible as both the change between the Do Minimum and Do Something scenarios for all receptors is less than 1% of the Air Quality Assessment Level (AQAL) and all receptors are below 75% of the AQAL.

Table 16: Results of construction traffic impact assessment at human health receptors

Receptor ID	Do Somethin	g Scenario Re	sults	
	Annual Mean NO ₂ (µg/m ³)	Annual Mean PM ₁₀ (µg/m ³)	Annual Mean PM _{2.5} (µg/m ³)	No. of exceedances for 24-hour mean PM ₁₀ >50µg/m ³ (days)
TR1	9.1 (0.1)	15.9 (<0.1)	8.5 (<0.1)	1 (<1)
TR2	9.8 (0.1)	16.1 (<0.1)	8.6 (<0.1)	1 (<1)
TR3	10.7 (0.1)	15.9 (<0.1)	8.6 (<0.1)	1 (<1)
TR4	16.1 (0.2)	16.8 (<0.1)	9.3 (<0.1)	1 (<1)
TR5	12.6 (0.1)	15.8 (<0.1)	8.7 (<0.1)	1 (<1)
TR6	11 (<0.1)	15.3 (<0.1)	8.4 (<0.1)	1 (<1)
TR7	9.8 (<0.1)	14.4 (<0.1)	8.1 (<0.1)	1 (<1)
TR8	9.9 (<0.1)	14.4 (<0.1)	8.1 (<0.1)	1 (<1)
TR9	8.7 (<0.1)	14.2 (<0.1)	7.9 (<0.1)	1 (<1)
TR10	11.1 (0.4)	16.9 (0.1)	9.1 (0.1)	1 (<1)
TR11	9.1 (0.2)	16.2 (0.1)	8.7 (<0.1)	1 (<1)
TR12	8 (0.1)	15.8 (<0.1)	8.4 (<0.1)	1 (<1)
Values in parenth	neses indicate the	difference betwe	een the Do Some	ething scenario

results and the Do Minimum scenario results; (Do Something – Do Minimum)

3.3.39 Annual mean concentrations of nitrogen dioxide have been predicted at human health receptors using Highways England's Long Term Trends calculator (version 6), to assess concentrations due to a slower rate of improvement in background air quality. These results are shown in Table 17.

Table 17: Results of construction traffic impact assessment at humanhealth receptors following Long Term Trends Calculation

Receptor ID	Adjusted Annual Mean NO ₂ Concentration (µg/m ³)			
	Do Minimum	Do Something		
TR1	11.9	12.1		
TR2	13.3	13.5		
TR3	14.7	14.9		
TR4	23.8	24.1		
TR5	18.0	18.1		
TR6	15.3	15.3		
TR7	13.2	13.2		

Receptor ID	Adjusted Annual Mean NO ₂ Concentration (µg/m ³)				
	Do Minimum	Do Something			
TR8	13.3	13.3			
TR9	11.0	11.0			
TR10	15.7	16.3			
TR11	12.1	12.4			
TR12	10.0	10.1			

- 3.3.40 Despite there being some sensitive human receptors along roads where construction traffic will be present, the largest change in AADT flow occurs on the A18 to the west of the construction site access, and along the A161. The effects of changes in pollutant concentrations due to construction traffic and changes in traffic flows on the road network are considered to be not significant, given that the magnitude of change between the two scenarios is so small where human receptors are present.
- 3.3.41 Table 18 and Table 19 display the relevant information and assessment results for the significance of construction traffic impacts. These are further discussed in Chapter 11: Biodiversity and Nature Conservation (ES Volume I -Application Document Ref. 6.2).

 Table 18: Ecological sites within construction traffic study area containing features which are sensitive to air pollutants

Receptor ID	Ecological Site	Relevant Nitrogen Critical Load Class ¹	Lower Critical Load (kgNha ⁻¹ yr ⁻ ¹) ^{1,2}	Background Nitrogen Deposition (kgNha ⁻¹ yr ⁻¹) ^{1,3}	Background NO _x Concentration (µg/m ³)
TE1, TE2	Hatfield Waste Drain LWS	Neutral grassland	20	18.06	14.61
TE3	North Engine Drain, Belton LWS	Neutral grassland	20	18.06	14.63
TE4	River Torne LWS	Neutral grassland	20	18.06	14.63
TE5	Three Rivers LWS	Neutral grassland	20	17.08	13.32
TE6	South Engine Drain, Belton LWS	Coastal and floodplain grazing marsh	20	17.92	13.5
TE7	Three Rivers LWS	Neutral grassland	20	17.08	14.27
TE8	Stainforth and Keadby Canal Corridor LWS	Coastal and floodplain grazing marsh	20	17.08	14.27
TE9	Keadby Wetland LWS	Neutral Grass Land	20	17.08	14.27
TE10a-j	Humber Estuary SSSI SAC	Pioneer, Low-mid, mid-upper saltmarshes	20	17.1	14.27

Receptor ID	Ecological Site	Relevant Nitrogen Critical Load Class ¹	Lower Critical Load (kgNha ⁻¹ yr ⁻ ¹) ^{1,2}	Background Nitrogen Deposition (kgNha ⁻¹ yr ⁻¹) ^{1,3}	Background NO _x Concentration (µg/m ³)	
TE11a-j	Humber Estuary SSSI SAC	Pioneer, Low-mid, mid-upper saltmarshes	20	17.1	16.12	
TE12	Hatfield Chase Ditch SSSI	Fen, Marsh and Swamp (assumed)	15	18.06	14.61	
TE13a-j	Crowle Borrow Pits SSSI	Broadleaved deciduous woodland	10	31.2	14.63	
	 ¹Relevant nitrogen critical load class, lower value of the critical load range, average nitrogen deposition rate and average NOx concentration data taken from Air Pollution Information System website (http://www.apis.ac.uk/). Note these values are statistics for the entire designated site. ²Taken from 'Indicative values within nutrient nitrogen critical load ranges for use in air pollution impact assessments' (http://www.apis.ac.uk /indicative-critical-load-values), and advice from the project ecologists. 					
	³ These data are the mos	t recent available from the	APIS website a	nd are a 3-year mean for	the period 2015-17.	

Ecological Receptor ID	Shortest Distance to Road Source (m)	Max DS ¹ NO _x conc. (μg/m ³)	Max NO _x change (DS-DM ²) (µg/m ³)	Max DS Ndep (kgNha ⁻¹ yr ⁻¹)	Max Ndep change (DS-DM) as % of critical load (%)
TE1	5	30.9	1.4	20.4	1.0
TE2	25	19.5	0.4	18.8	0.3
TE3	10	23.8	0.8	19.4	0.6
TE4	30	18.6	0.3	18.6	0.2
TE5	10	25.6	0.4	18.9	0.3
TE6	5	23.3	0.3	19.3	0.2
TE7	15	17.9	<0.1	17.6	<0.1
TE8	5	21.0	<0.1	18.1	<0.1
TE9	105	15.1	<0.1	17.2	<0.1
TE10a	10	19.8	<0.1	17.9	<0.1
TE10b	30	16.8	<0.1	17.5	<0.1
TE10c	55	16.0	<0.1	17.4	<0.1
TE10d	75	15.7	<0.1	17.3	<0.1
TE10e	100	15.5	<0.1	17.3	<0.1
TE10f	120	15.3	<0.1	17.3	<0.1
TE10g	140	15.2	<0.1	17.2	<0.1
TE10h	165	15.2	<0.1	17.2	<0.1
TE10i	185	15.1	<0.1	17.2	<0.1

Table 19: Results of construction traffic impact assessment at ecological receptors

Ecological Receptor ID	Shortest Distance to Road Source (m)	Max DS ¹ NO _x conc. (μg/m ³)	Max NO _x change (DS-DM ²) (µg/m ³)	Max DS Ndep (kgNha ⁻¹ yr ⁻¹)	Max Ndep change (DS-DM) as % of critical load (%)
TE10j	210	15.0	<0.1	17.2	<0.1
TE11a	5	46.6	0.6	21.5	0.4
TE11b	25	26.9	0.2	18.7	0.1
TE11c	40	23.0	0.1	18.1	0.1
TE11d	60	21.2	0.1	17.8	0.1
TE11e	80	20.2	0.1	17.7	0.1
TE11f	100	19.5	0.1	17.6	0.1
TE11g	120	19.0	0.1	17.5	<0.1
TE11h	140	18.7	0.1	17.5	<0.1
TE11i	155	18.4	<0.1	17.4	<0.1
TE11j	175	18.1	<0.1	17.4	<0.1
TE12	5	25.5	0.9	19.6	0.9
TE13a	30	20.5	0.5	32.0	0.7
TE13b	50	18.7	0.4	31.8	0.5
TE13c	75	17.8	0.3	31.7	0.4
TE13d	95	17.2	0.2	31.6	0.3
TE13e	115	16.9	0.2	31.5	0.3
TE13f	135	16.6	0.2	31.5	0.3
TE13g	155	16.4	0.2	31.5	0.2

Ecological Receptor ID	Shortest Distance to Road Source (m)	Max DS ¹ NO _x conc. (μg/m ³)	Max NO _x change (DS-DM ²) (µg/m ³)	Max DS Ndep (kgNha ⁻¹ yr ⁻¹)	Max Ndep change (DS-DM) as % of critical load (%)
TE13h	175	16.2	0.1	31.4	0.2
TE13i	200	16.1	0.1	31.4	0.2
TE13j	220	15.9	0.1	31.4	0.2
1 DS = Do Some 2 DM = Do Minin	-				

- 3.3.42 The significance of construction traffic impacts and effects on ecological receptors is discussed in **Chapter 11**: Biodiversity and Nature Conservation (ES Volume I **Application Document Ref. 6.2**).
- 3.3.43 It is considered that the assessment of construction traffic impacts carried out, would be comparable to the likely impacts associated with decommissioning activities.

4.0 CONCLUSIONS

4.1 Overview

- 4.1.1 This report has assessed the impact on local air quality arising from the construction phases of the Proposed Development. The assessment has used a sensitivity assessment methodology to assess the likelihood and scale of impact on sensitive receptors located in the vicinity of the Proposed Development of the anticipated dust arisings from the construction activities and associated road traffic.
- 4.1.2 The evaluation of expected dust arisings from the proposed construction works has shown that without mitigation, there could be a low risk of significant impacts due to dust emissions associated with the construction phase on human health and a medium risk of significant impacts on the ecological receptors. Without mitigation, this could result in a significant effect, however appropriate mitigation measures for managing these risks will be set out in the Framework CEMP (Application Document Ref. 7.1) and will be in accordance with the IAQM guidance. These measures will be formalised through the final CEMP to be prepared by the construction contractor, secured by a requirement of the Draft DCO (Application Document Ref. 2.1). Through implementation of these measures, effects on both human health and ecological sensitive receptors are predicted to be not significant.
- 4.1.3 For construction road traffic, impacts at all receptors are considered not significant given that the change between the Do Minimum and Do Something scenarios is less than 1% of the AQAL and all receptors are below 75% of the AQAL. The effects due to changes in pollutant concentrations from changes in road traffic emissions is considered to be negligible, and not significant and no further mitigation measures are considered necessary.

5.0 REFERENCES

AEAT (2008), Analysis of the relationship between annual mean nitrogen dioxide concentrations and exceedances of the 1-hour mean AQS Objective, (online) [Accessed 01/06/2020]. Available online: http://lagm.defra.gov.uk/documents/NO2relationship_report.pdf

Carslaw, D. C. and K. Ropkins, (2012) *openair --- an R package for air quality data analysis*. Environmental Modelling & Software. Volume 27-28, 52-61

Department for Environment, Food and Rural Affairs (2016) *Local Air Quality Management Technical Guidance (TG16)* (online). [Accessed 04 February 2020]. Available online: <u>https://laqm.defra.gov.uk/documents/LAQM-TG16-February-18-v1.pdf</u>

Department of Environment, Food and Rural Affairs (2020) *Emissions Factor Toolkit* v10.1 (online). [Accessed 03/02/2021]. Available online: <u>https://laqm.defra.gov.uk/</u>

Highways England (2019) Design Manual for Roads and Bridges (DMRB), Volume 11 Environmental Assessment, Section 3 Environmental Assessment Techniques, Part 1, LA 105 Air Quality. Available online: <u>https://www.standardsforhighways.co.uk/dmrb/search/10191621-07df-44a3-</u> 892e-c1d5c7a28d90

Institute of Air Quality Management (IAQM) (2014) *Guidance on the assessment* of dust from demolition and construction v1.1, Update June 2016. Available online: <u>https://iaqm.co.uk/text/guidance/construction-dust-2014.pdf</u>

Institute of Air Quality Management (IAQM) (2017) Land-Use Planning & Development Control: Planning for Air Quality. v1.2, January 2017. Available online: <u>http://www.iaqm.co.uk/text/guidance/air-guality-planning-guidance.pdf</u>

Laxen and Marner (2003). Analysis of the Relationship between 1-hour and annual mean nitrogen dioxide at UK Roadside and Kerbside Monitoring Sites